1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
use std::marker::PhantomData;

use anyhow::{anyhow, ensure};
use bellperson::Circuit;
use blstrs::Scalar as Fr;
use filecoin_hashers::Hasher;
use sha2::{Digest, Sha256};
use storage_proofs_core::{
    compound_proof::{CircuitComponent, CompoundProof},
    error::Result,
    gadgets::por::PoRCompound,
    merkle::MerkleTreeTrait,
    parameter_cache::{CacheableParameters, ParameterSetMetadata},
    por,
    proof::ProofScheme,
    util::NODE_SIZE,
};

use crate::fallback::{
    generate_leaf_challenge_inner, get_challenge_index, FallbackPoSt, FallbackPoStCircuit, Sector,
};

pub struct FallbackPoStCompound<Tree>
where
    Tree: MerkleTreeTrait,
{
    _t: PhantomData<Tree>,
}

impl<C: Circuit<Fr>, P: ParameterSetMetadata, Tree: MerkleTreeTrait> CacheableParameters<C, P>
    for FallbackPoStCompound<Tree>
{
    fn cache_prefix() -> String {
        format!("proof-of-spacetime-fallback-{}", Tree::display())
    }
}

impl<'a, Tree: 'static + MerkleTreeTrait>
    CompoundProof<'a, FallbackPoSt<'a, Tree>, FallbackPoStCircuit<Tree>>
    for FallbackPoStCompound<Tree>
{
    fn generate_public_inputs(
        pub_inputs: &<FallbackPoSt<'a, Tree> as ProofScheme<'a>>::PublicInputs,
        pub_params: &<FallbackPoSt<'a, Tree> as ProofScheme<'a>>::PublicParams,
        partition_k: Option<usize>,
    ) -> Result<Vec<Fr>> {
        let mut inputs = Vec::new();

        let por_pub_params = por::PublicParams {
            leaves: (pub_params.sector_size as usize / NODE_SIZE),
            private: true,
        };

        let num_sectors_per_chunk = pub_params.sector_count;

        let partition_index = partition_k.unwrap_or(0);

        let sectors = pub_inputs
            .sectors
            .chunks(num_sectors_per_chunk)
            .nth(partition_index)
            .ok_or_else(|| anyhow!("invalid number of sectors/partition index"))?;

        for (i, sector) in sectors.iter().enumerate() {
            // 1. Inputs for verifying comm_r = H(comm_c || comm_r_last)
            inputs.push(sector.comm_r.into());

            // avoid rehashing fixed inputs
            let mut challenge_hasher = Sha256::new();
            challenge_hasher.update(AsRef::<[u8]>::as_ref(&pub_inputs.randomness));
            challenge_hasher.update(&u64::from(sector.id).to_le_bytes()[..]);

            // 2. Inputs for verifying inclusion paths
            for n in 0..pub_params.challenge_count {
                let sector_index = partition_index * pub_params.sector_count + i;
                let challenge_index = get_challenge_index(
                    pub_params.api_version,
                    sector_index,
                    pub_params.challenge_count,
                    n,
                );
                let challenged_leaf = generate_leaf_challenge_inner::<
                    <Tree::Hasher as Hasher>::Domain,
                >(
                    challenge_hasher.clone(), pub_params, challenge_index
                );

                let por_pub_inputs = por::PublicInputs {
                    commitment: None,
                    challenge: challenged_leaf as usize,
                };
                let por_inputs = PoRCompound::<Tree>::generate_public_inputs(
                    &por_pub_inputs,
                    &por_pub_params,
                    partition_k,
                )?;

                inputs.extend(por_inputs);
            }
        }
        let num_inputs_per_sector = inputs.len() / sectors.len();

        // duplicate last one if too little sectors available
        while inputs.len() / num_inputs_per_sector < num_sectors_per_chunk {
            let s = inputs[inputs.len() - num_inputs_per_sector..].to_vec();
            inputs.extend_from_slice(&s);
        }
        assert_eq!(inputs.len(), num_inputs_per_sector * num_sectors_per_chunk);

        Ok(inputs)
    }

    fn circuit(
        pub_in: &<FallbackPoSt<'a, Tree> as ProofScheme<'a>>::PublicInputs,
        _priv_in: <FallbackPoStCircuit<Tree> as CircuitComponent>::ComponentPrivateInputs,
        vanilla_proof: &<FallbackPoSt<'a, Tree> as ProofScheme<'a>>::Proof,
        pub_params: &<FallbackPoSt<'a, Tree> as ProofScheme<'a>>::PublicParams,
        partition_k: Option<usize>,
    ) -> Result<FallbackPoStCircuit<Tree>> {
        let num_sectors_per_chunk = pub_params.sector_count;
        ensure!(
            pub_params.sector_count == vanilla_proof.sectors.len(),
            "vanilla proofs must equal sector_count: {} != {}",
            num_sectors_per_chunk,
            vanilla_proof.sectors.len(),
        );

        let partition_index = partition_k.unwrap_or(0);
        let sectors = pub_in
            .sectors
            .chunks(num_sectors_per_chunk)
            .nth(partition_index)
            .ok_or_else(|| anyhow!("invalid number of sectors/partition index"))?;

        let mut res_sectors = Vec::with_capacity(vanilla_proof.sectors.len());

        for (i, vanilla_proof) in vanilla_proof.sectors.iter().enumerate() {
            let pub_sector = if i < sectors.len() {
                &sectors[i]
            } else {
                // Repeat the last sector, iff there are too little inputs to fill the circuit.
                &sectors[sectors.len() - 1]
            };

            res_sectors.push(Sector::circuit(pub_sector, vanilla_proof)?);
        }

        assert_eq!(res_sectors.len(), num_sectors_per_chunk);

        Ok(FallbackPoStCircuit {
            prover_id: Some(pub_in.prover_id.into()),
            sectors: res_sectors,
        })
    }

    fn blank_circuit(
        pub_params: &<FallbackPoSt<'a, Tree> as ProofScheme<'a>>::PublicParams,
    ) -> FallbackPoStCircuit<Tree> {
        let sectors = (0..pub_params.sector_count)
            .map(|_| Sector::blank_circuit(pub_params))
            .collect();

        FallbackPoStCircuit {
            prover_id: None,
            sectors,
        }
    }
}