1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
use std::io::Read;

use anyhow::{ensure, Context};
use filecoin_hashers::{Domain, Hasher};
use fr32::Fr32Ary;
use merkletree::merkle::next_pow2;

use crate::{
    error::{Error, Result},
    merkle::BinaryMerkleTree,
    util::NODE_SIZE,
};

/// `position`, `length` are in H::Domain units
#[derive(Clone, Debug)]
pub struct PieceSpec {
    pub comm_p: Fr32Ary,
    pub position: usize,
    pub number_of_leaves: usize,
}

impl PieceSpec {
    /// `compute_packing` returns a packing list and a proof size.
    /// A packing list is a pair of (start, length) pairs, relative to the beginning of the piece,
    /// in leaf units.
    /// Proof size is a number of elements (size same as one leaf) provided in the variable part of a PieceInclusionProof.
    pub fn compute_packing(&self, tree_len: usize) -> Result<(Vec<(usize, usize)>, usize)> {
        ensure!(self.is_aligned(tree_len)?, Error::UnalignedPiece);

        let packing_list = vec![(0, self.number_of_leaves)];
        Ok((packing_list, self.proof_length(tree_len)))
    }

    pub fn is_aligned(&self, tree_len: usize) -> Result<bool> {
        piece_is_aligned(self.position, self.number_of_leaves, tree_len)
    }

    fn height(&self) -> usize {
        height_for_length(self.number_of_leaves)
    }

    // `proof_length` is length of proof that comm_p is in the containing root, excluding comm_p and root, which aren't needed for the proof itself.
    fn proof_length(&self, tree_len: usize) -> usize {
        height_for_length(tree_len) - self.height()
    }
}

/// Generate `comm_p` from a source and return it as bytes.
pub fn generate_piece_commitment_bytes_from_source<H: Hasher>(
    source: &mut dyn Read,
    padded_piece_size: usize,
) -> Result<Fr32Ary> {
    ensure!(padded_piece_size > 32, "piece is too small");
    ensure!(padded_piece_size % 32 == 0, "piece is not valid size");

    let mut buf = [0; NODE_SIZE];

    let parts = (padded_piece_size as f64 / NODE_SIZE as f64).ceil() as usize;

    let tree = BinaryMerkleTree::<H>::try_from_iter((0..parts).map(|_| {
        source.read_exact(&mut buf)?;
        <H::Domain as Domain>::try_from_bytes(&buf).context("invalid Fr element")
    }))
    .context("failed to build tree")?;

    let mut comm_p_bytes = [0; NODE_SIZE];
    let comm_p = tree.root();
    comm_p.write_bytes(&mut comm_p_bytes)?;

    Ok(comm_p_bytes)
}

////////////////////////////////////////////////////////////////////////////////
// Utility

pub fn piece_is_aligned(position: usize, length: usize, tree_len: usize) -> Result<bool> {
    let capacity_at_pos = subtree_capacity(position, tree_len)?;

    Ok(capacity_at_pos.is_power_of_two() && capacity_at_pos >= length)
}

fn height_for_length(n: usize) -> usize {
    if n == 0 {
        0
    } else {
        (n as f64).log2().ceil() as usize
    }
}

fn subtree_capacity(pos: usize, total: usize) -> Result<usize> {
    ensure!(pos < total, "position must be less than tree capacity");

    let mut capacity = 1;
    // If tree is not 'full', then pos 0 will have subtree_capacity greater than size of tree.
    let mut cursor = pos + next_pow2(total);

    while cursor & 1 == 0 {
        capacity *= 2;
        cursor >>= 1;
    }
    Ok(capacity)
}
////////////////////////////////////////////////////////////////////////////////

#[cfg(test)]
mod tests {
    use super::*;

    use filecoin_hashers::poseidon::PoseidonHasher;

    #[test]
    fn test_subtree_capacity() {
        assert_eq!(
            subtree_capacity(0, 16).expect("subtree_capacity failed"),
            16
        );
        assert_eq!(subtree_capacity(1, 16).expect("subtree_capacity failed"), 1);
        assert_eq!(subtree_capacity(2, 16).expect("subtree_capacity failed"), 2);
        assert_eq!(subtree_capacity(3, 16).expect("subtree_capacity failed"), 1);
        assert_eq!(subtree_capacity(4, 16).expect("subtree_capacity failed"), 4);
        assert_eq!(subtree_capacity(5, 16).expect("subtree_capacity failed"), 1);
        assert_eq!(subtree_capacity(6, 16).expect("subtree_capacity failed"), 2);
        assert_eq!(subtree_capacity(7, 16).expect("subtree_capacity failed"), 1);
        assert_eq!(subtree_capacity(8, 16).expect("subtree_capacity failed"), 8);
        assert_eq!(subtree_capacity(9, 16).expect("subtree_capacity failed"), 1);
        assert_eq!(
            subtree_capacity(10, 16).expect("subtree_capacity failed"),
            2
        );
        assert_eq!(
            subtree_capacity(11, 16).expect("subtree_capacity failed"),
            1
        );
        assert_eq!(
            subtree_capacity(12, 16).expect("subtree_capacity failed"),
            4
        );
        assert_eq!(
            subtree_capacity(13, 16).expect("subtree_capacity failed"),
            1
        );
        assert_eq!(
            subtree_capacity(14, 16).expect("subtree_capacity failed"),
            2
        );
        assert_eq!(
            subtree_capacity(15, 16).expect("subtree_capacity failed"),
            1
        );
    }

    #[test]
    fn test_generate_piece_commitment_bytes_from_source() -> Result<()> {
        let some_bytes: Vec<u8> = vec![0; 64];
        let mut some_bytes_slice: &[u8] = &some_bytes;
        generate_piece_commitment_bytes_from_source::<PoseidonHasher>(&mut some_bytes_slice, 64)
            .expect("threshold for sufficient bytes is 32");

        let not_enough_bytes: Vec<u8> = vec![0; 7];
        let mut not_enough_bytes_slice: &[u8] = &not_enough_bytes;
        assert!(
            generate_piece_commitment_bytes_from_source::<PoseidonHasher>(
                &mut not_enough_bytes_slice,
                7
            )
            .is_err(),
            "insufficient bytes should error out"
        );

        Ok(())
    }
}