1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
use core::{
    cmp::Ordering,
    iter::{
        Chain, Cloned, Copied, Cycle, Enumerate, FlatMap, Fuse, Inspect, Map, Peekable, Rev, Take,
    },
    num::NonZeroUsize,
};

use crate::NonEmpty;

macro_rules! unwrap {
    ($expr:expr) => {
        match $expr {
            Some(it) => it,
            // Safety:
            // - NonEmpty<impl Iterator> is only constructed from known NonEmpty items
            // - NonEmpty<impl Iterator> does give out mutable access to the inner iterator
            //   (so it always has one element)
            None => unsafe { crate::unreachable() },
        }
    };
}

/// Methods on [`Iterator`]s with a non-empty invariant.
///
/// See [`Self::relax`] to access the normal iterator inside.
impl<I> NonEmpty<I>
where
    I: Iterator,
{
    /// [`NonEmpty`] version of [`Iterator::next`].
    /// ```
    /// # use nunny::{vec};
    /// let v = vec![1, 2, 3];
    /// let _: Option<&u8> = v.iter().next();
    ///     // ^ normally you have to handle the empty case
    /// let _: &u8 = v.iter_ne().first();
    ///     // ^ but we know there is at least one element
    /// ```
    pub fn first(mut self) -> I::Item {
        unwrap!(self.inner.next())
    }
    /// [`NonEmpty`] version of [`Iterator::last`].
    /// ```
    /// # use nunny::{vec};
    /// let v = vec![1, 2, 3];
    /// let _: Option<&u8> = v.iter().last();
    ///     // ^ normally you have to handle the empty case
    /// let _: &u8 = v.iter_ne().last();
    ///     // ^ but we know there is at least one element
    /// ```
    pub fn last(self) -> I::Item {
        unwrap!(self.inner.last())
    }
    /// [`NonEmpty`] version of [`Iterator::map`].
    /// ```
    /// # use nunny::{slice};
    /// let iter = slice![1, 2, 3].iter_ne();
    /// assert_eq!(
    ///     iter.map(|it| *it * 2).last(),
    ///                         // ^ the invariant is maintained
    ///                         //   so we _know_ there's a last element
    ///     6
    /// );
    /// ```
    pub fn map<B, F>(self, f: F) -> NonEmpty<Map<I, F>>
    where
        F: FnMut(I::Item) -> B,
    {
        NonEmpty {
            inner: self.inner.map(f),
        }
    }
    /// [`NonEmpty`] version of [`Iterator::chain`].
    /// ```
    /// # use nunny::{slice};
    /// let iter = slice![1, 2].iter_ne();
    /// assert_eq!(
    ///     iter.chain(&[3]).last(),
    ///                   // ^ the invariant is maintained
    ///                   //   so we _know_ there's a last element
    ///     &3
    /// );
    /// ```
    pub fn chain<U>(self, other: U) -> NonEmpty<Chain<I, <U as IntoIterator>::IntoIter>>
    where
        U: IntoIterator<Item = I::Item>,
    {
        NonEmpty {
            inner: self.inner.chain(other),
        }
    }
    /// [`NonEmpty`] version of [`Iterator::enumerate`].
    /// ```
    /// # use nunny::{slice};
    /// let iter = slice!['a', 'b'].iter_ne();
    /// assert_eq!(
    ///     iter.enumerate().last(),
    ///                  // ^ the invariant is maintained
    ///                  //   so we _know_ there's a last element
    ///     (1, &'b')
    /// );
    /// ```
    pub fn enumerate(self) -> NonEmpty<Enumerate<I>> {
        NonEmpty {
            inner: self.inner.enumerate(),
        }
    }
    /// [`NonEmpty`] version of [`Iterator::peekable`], allowing you to use
    /// [`Self::peek`] and [`Self::peek_mut`]
    /// ```
    /// # use nunny::{vec, NonEmpty};
    /// let mut peek_me = vec!['a', 'b'].into_iter_ne().peekable();
    /// assert_eq!(
    ///     *peek_me.peek(),
    ///     'a'
    /// );
    /// *peek_me.peek_mut() = 'b';
    /// assert_eq!(
    ///     peek_me.collect_vec(),
    ///     ['b', 'b']
    /// );
    /// ```
    pub fn peekable(self) -> NonEmpty<Peekable<I>> {
        NonEmpty {
            inner: self.inner.peekable(),
        }
    }
    /// [`NonEmpty`] version of [`Iterator::take`].
    ///
    /// Note that `n` cannot be zero, to maintain the [`NonEmpty`] invariant.
    ///
    /// ```
    /// # use nunny::{slice, nonzero};
    /// let iter = slice!['a', 'b'].iter_ne();
    /// assert_eq!(
    ///     iter.take(nonzero!(1)).last(),
    ///            // ^ compile time checked
    ///     &'a'
    /// )
    /// ```
    pub fn take(self, n: NonZeroUsize) -> NonEmpty<Take<I>> {
        NonEmpty {
            inner: self.inner.take(n.get()),
        }
    }
    // pub fn flat_map
    /// [`NonEmpty`] version of [`Iterator::flatten`].
    ///
    /// Note that the inner items must also be [`NonEmpty`], to maintain the invariant.
    /// ```
    /// use nunny::{vec};
    /// let nested = vec![vec![1], vec![2, 3]];
    /// assert_eq!(
    ///     nested.into_iter_ne().flatten().collect_vec(),
    ///     [1, 2, 3],
    /// );
    /// ```
    #[allow(clippy::type_complexity)]
    pub fn flatten<II, T>(self) -> NonEmpty<FlatMap<I, II, fn(I::Item) -> II>>
    where
        I: Iterator<Item = NonEmpty<II>>,
        //                 ^ each item is nonempty
        II: IntoIterator<Item = T>,
        // TODO(aatifsyed): a trait NonEmptyIterator would make this more ergonomic
        //                  See commit history for an attempt
    {
        NonEmpty {
            inner: self.inner.flat_map(|it| it.inner),
        }
    }
    /// [`NonEmpty`] version of [`Iterator::fuse`].
    pub fn fuse(self) -> NonEmpty<Fuse<I>> {
        NonEmpty {
            inner: self.inner.fuse(),
        }
    }
    /// [`NonEmpty`] version of [`Iterator::inspect`].
    pub fn inspect<F>(self, f: F) -> NonEmpty<Inspect<I, F>>
    where
        F: FnMut(&I::Item),
    {
        NonEmpty {
            inner: self.inner.inspect(f),
        }
    }
    /// [`NonEmpty`] version of [`Iterator::reduce`].
    /// ```
    /// # use nunny::{vec};
    /// # use core::cmp::min;
    /// let v = vec![1, 2, 3];
    /// let _: Option<&u8> = v.iter().reduce(min);
    ///     // ^ normally you have to handle the empty case
    /// let _: &u8 = v.iter_ne().reduce(min);
    ///     // ^ but we know there is at least one element
    /// ```
    pub fn reduce<F>(self, f: F) -> I::Item
    where
        F: FnMut(I::Item, I::Item) -> I::Item,
    {
        unwrap!(self.inner.reduce(f))
    }
    /// [`NonEmpty`] version of [`Iterator::max`].
    /// ```
    /// # use nunny::{vec};
    /// let v = vec![1, 2, 3];
    /// let _: Option<&u8> = v.iter().max();
    ///     // ^ normally you have to handle the empty case
    /// let _: &u8 = v.iter_ne().max();
    ///     // ^ but we know there is at least one element
    /// ```
    pub fn max(self) -> I::Item
    where
        I::Item: Ord,
    {
        unwrap!(self.inner.max())
    }
    /// [`NonEmpty`] version of [`Iterator::min`].
    /// ```
    /// # use nunny::{vec};
    /// let v = vec![1, 2, 3];
    /// let _: Option<&u8> = v.iter().min();
    ///     // ^ normally you have to handle the empty case
    /// let _: &u8 = v.iter_ne().min();
    ///     // ^ but we know there is at least one element
    /// ```
    pub fn min(self) -> I::Item
    where
        I::Item: Ord,
    {
        unwrap!(self.inner.min())
    }
    /// [`NonEmpty`] version of [`Iterator::max_by_key`].
    pub fn max_by_key<B, F>(self, f: F) -> I::Item
    where
        B: Ord,
        F: FnMut(&I::Item) -> B,
    {
        unwrap!(self.inner.max_by_key(f))
    }
    /// [`NonEmpty`] version of [`Iterator::max_by`].
    pub fn max_by<F>(self, compare: F) -> I::Item
    where
        F: FnMut(&I::Item, &I::Item) -> Ordering,
    {
        unwrap!(self.inner.max_by(compare))
    }
    /// [`NonEmpty`] version of [`Iterator::min_by_key`].
    pub fn min_by_key<B, F>(self, f: F) -> I::Item
    where
        B: Ord,
        F: FnMut(&I::Item) -> B,
    {
        unwrap!(self.inner.min_by_key(f))
    }
    /// [`NonEmpty`] version of [`Iterator::min_by`].
    pub fn min_by<F>(self, compare: F) -> I::Item
    where
        F: FnMut(&I::Item, &I::Item) -> Ordering,
    {
        unwrap!(self.inner.min_by(compare))
    }
    /// [`NonEmpty`] version of [`Iterator::rev`].
    pub fn rev(self) -> NonEmpty<Rev<I>>
    where
        I: DoubleEndedIterator,
    {
        NonEmpty {
            inner: self.inner.rev(),
        }
    }

    /// [`NonEmpty`] version of [`Iterator::unzip`].
    #[cfg(feature = "alloc")]
    #[cfg_attr(do_doc_cfg, doc(cfg(feature = "alloc")))]
    pub fn unzip_vec<A, B>(self) -> (crate::Vec<A>, crate::Vec<B>)
    where
        I: Iterator<Item = (A, B)>,
    {
        let (a, b) = self.inner.unzip();
        // Safety:
        // - NonEmpty<impl Iterator> is only constructed from known NonEmpty items
        // - NonEmpty<impl Iterator> does not allow mutable access to the inner iterator
        //   (so it always has one element)
        unsafe { (crate::Vec::new_unchecked(a), crate::Vec::new_unchecked(b)) }
    }
    /// [`NonEmpty`] version of [`Iterator::copied`].
    pub fn copied<'a, T>(self) -> NonEmpty<Copied<I>>
    where
        T: 'a + Copy,
        I: Iterator<Item = &'a T>,
    {
        NonEmpty {
            inner: self.inner.copied(),
        }
    }
    /// [`NonEmpty`] version of [`Iterator::cloned`].
    pub fn cloned<'a, T>(self) -> NonEmpty<Cloned<I>>
    where
        T: 'a + Clone,
        I: Iterator<Item = &'a T>,
    {
        NonEmpty {
            inner: self.inner.cloned(),
        }
    }
    /// [`NonEmpty`] version of [`Iterator::cycle`].
    pub fn cycle(self) -> NonEmpty<Cycle<I>>
    where
        I: Clone,
    {
        NonEmpty {
            inner: self.inner.cycle(),
        }
    }
    /// Remove the [`NonEmpty`] wrapper, allowing you to access normal iterator
    /// methods like [`Iterator::filter`].
    #[doc(alias = "into_iter")]
    #[doc(alias = "into_inner")]
    pub fn relax(self) -> I {
        self.inner
    }
    /// Collect this iterator into a [`NonEmpty<Vec>`].
    #[cfg(feature = "alloc")]
    #[cfg_attr(do_doc_cfg, doc(cfg(feature = "alloc")))]
    pub fn collect_vec(self) -> crate::Vec<I::Item> {
        // Safety:
        // - NonEmpty<impl Iterator> is only constructed from known NonEmpty items
        // - NonEmpty<impl Iterator> does not allow mutable access to the inner iterator
        //   (so it always has one element)
        unsafe { crate::Vec::new_unchecked(self.inner.collect()) }
    }
    /// Collect [`Ok`] items into a [`NonEmpty<Vec>`], short-circuiting on [`Err`].
    #[cfg(feature = "alloc")]
    #[cfg_attr(do_doc_cfg, doc(cfg(feature = "alloc")))]
    pub fn try_collect_vec<T, E>(self) -> Result<crate::Vec<T>, E>
    where
        I: Iterator<Item = Result<T, E>>,
    {
        match self.inner.collect() {
            // Safety:
            // - NonEmpty<impl Iterator> is only constructed from known NonEmpty items
            // - NonEmpty<impl Iterator> does not allow mutable access to the inner iterator
            //   (so it always has one element)
            Ok(it) => Ok(unsafe { crate::Vec::new_unchecked(it) }),
            Err(e) => Err(e),
        }
    }
}

impl<I> NonEmpty<Peekable<I>>
where
    I: Iterator,
{
    /// Peek this [`NonEmpty`] iterator, without advancing it.
    ///
    /// See [`Self::peekable`].
    pub fn peek(&mut self) -> &I::Item {
        unwrap!(self.inner.peek())
    }
    /// Peek and modify this [`NonEmpty`] iterator, without advancing it.
    ///
    /// See [`Self::peekable`].
    pub fn peek_mut(&mut self) -> &mut I::Item {
        unwrap!(self.inner.peek_mut())
    }
}