1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
// Copyright 2021-2023 Protocol Labs
// SPDX-License-Identifier: Apache-2.0, MIT
use std::io::Cursor;
use std::ops::{Deref, DerefMut};

use cid::Cid;
use fvm_shared::address::Address;
use fvm_shared::error::ErrorNumber;
use fvm_shared::MAX_CID_LEN;

use crate::kernel::{ClassifyResult, Context as _, Result};
use crate::syscall_error;

#[cfg(doc)]
use crate::Kernel;

/// The syscall context. Allows syscalls to access the [`Kernel`] and the actor's memory.
pub struct Context<'a, K> {
    /// The running actor's [`Kernel`].
    pub kernel: &'a mut K,
    /// The running actor's [`Memory`].
    pub memory: &'a mut Memory,
}

/// Represents a Wasm memory. All methods are inexpensive and time-bounded, regardless of the
/// inputs. It's usually not necessary to explicitly account for the gas costs of calling these
/// methods a small (< 5) constant number of times while handling a syscall.
#[repr(transparent)]
pub struct Memory([u8]);

impl Deref for Memory {
    type Target = [u8];

    fn deref(&self) -> &Self::Target {
        &self.0
    }
}

impl DerefMut for Memory {
    fn deref_mut(&mut self) -> &mut Self::Target {
        &mut self.0
    }
}

impl Memory {
    /// Construct a new "memory" from the given slice.
    #[allow(clippy::needless_lifetimes)]
    pub fn new<'a>(m: &'a mut [u8]) -> &'a mut Memory {
        // We explicitly specify the lifetimes here to ensure that the cast doesn't inadvertently
        // change them.
        unsafe { &mut *(m as *mut [u8] as *mut Memory) }
    }

    /// Check that the given slice, specified by an offset and length, is in-bounds.
    pub fn check_bounds(&self, offset: u32, len: u32) -> Result<()> {
        if (offset as u64) + (len as u64) <= (self.0.len() as u64) {
            Ok(())
        } else {
            Err(
                syscall_error!(IllegalArgument; "buffer {} (length {}) out of bounds", offset, len)
                    .into(),
            )
        }
    }

    /// Return a slice into the actor's memory.
    ///
    /// This slice is valid for the lifetime of the syscall, borrowing the actors memory without
    /// copying.
    ///
    /// On failure, this method returns an [`ErrorNumber::IllegalArgument`] error.
    pub fn try_slice(&self, offset: u32, len: u32) -> Result<&[u8]> {
        self.get(offset as usize..)
            .and_then(|data| data.get(..len as usize))
            .ok_or_else(|| format!("buffer {} (length {}) out of bounds", offset, len))
            .or_error(ErrorNumber::IllegalArgument)
    }

    /// Return a mutable slice into the actor's memory.
    ///
    /// This slice is valid for the lifetime of the syscall, borrowing the actors memory without
    /// copying.
    pub fn try_slice_mut(&mut self, offset: u32, len: u32) -> Result<&mut [u8]> {
        self.get_mut(offset as usize..)
            .and_then(|data| data.get_mut(..len as usize))
            .ok_or_else(|| format!("buffer {} (length {}) out of bounds", offset, len))
            .or_error(ErrorNumber::IllegalArgument)
    }

    /// Return a slice of byte arrays into the actor's memory.
    ///
    /// This slice of byte arrays is valid for the lifetime of the syscall, borrowing the actors memory without
    /// copying.
    pub fn try_chunks<const S: usize>(&self, offset: u32, len: u32) -> Result<&[[u8; S]]> {
        let num_chunks = {
            let len = len as usize;
            if len % S != 0 {
                return Err(syscall_error!(
                    IllegalArgument;
                    "buffer length {len} is not divisible by chunk len {S}"
                )
                .into());
            }
            len / S
        };

        self.try_slice(offset, len).map(|bytes| {
            let arr_ptr = bytes.as_ptr() as *const [u8; S];
            unsafe { std::slice::from_raw_parts(arr_ptr, num_chunks) }
        })
    }

    /// Read a CID from actor memory starting at the given offset.
    ///
    /// On failure, this method returns an [`ErrorNumber::IllegalArgument`] error.
    pub fn read_cid(&self, offset: u32) -> Result<Cid> {
        // NOTE: Be very careful when changing this code.
        //
        // We intentionally read the CID till the end of memory. We intentionally do not "slice"
        // with a fixed end.
        // - We _can't_ slice MAX_CID_LEN because there may not be MAX_CID_LEN addressable memory
        //   after the offset.
        // - We can safely read from an "arbitrary" sized slice because `Cid::read_bytes` will never
        //   read more than 4 u64 varints and 64 bytes of digest.
        Cid::read_bytes(
            self.0
                .get(offset as usize..)
                .ok_or_else(|| format!("cid at offset {} is out of bounds", offset))
                .or_error(ErrorNumber::IllegalArgument)?,
        )
        .or_error(ErrorNumber::IllegalArgument)
        .context("failed to parse cid")
    }

    /// Write a CID to actor memory at the given offset.
    ///
    /// If the CID's length exceeds the specified length, this method returns an
    /// [`ErrorNumber::BufferTooSmall`] error. For all other failures (e.g., memory out of bounds errors),
    /// this method returns an [`ErrorNumber::IllegalArgument`] error.
    pub fn write_cid(&mut self, k: &Cid, offset: u32, len: u32) -> Result<u32> {
        let out = self.try_slice_mut(offset, len)?;

        let mut buf = Cursor::new([0u8; MAX_CID_LEN]);
        // At the moment, all CIDs are gauranteed to fit in 100 bytes (statically) because the max
        // digest size is 64, the max varint size is 9, and there are 4 varints plus the digest.
        k.write_bytes(&mut buf).expect("failed to format a cid");
        let len = buf.position() as usize;
        if len > out.len() {
            return Err(syscall_error!(BufferTooSmall; "cid output buffer is too small").into());
        }
        out[..len].copy_from_slice(&buf.get_ref()[..len]);
        Ok(len as u32)
    }

    /// Read a Filecoin address from actor memory.
    ///
    /// On failure, this method returns an [`ErrorNumber::IllegalArgument`] error.
    pub fn read_address(&self, offset: u32, len: u32) -> Result<Address> {
        let bytes = self.try_slice(offset, len)?;
        Address::from_bytes(bytes).or_error(ErrorNumber::IllegalArgument)
    }
}

#[cfg(test)]
mod test {
    use super::*;

    const RAW: u64 = 0x55;
    const SHA2_256: u64 = 0x12;
    const HASH: &[u8] = b"\x2C\x26\xB4\x6B\x68\xFF\xC6\x8F\xF9\x9B\x45\x3C\x1D\x30\x41\x34\x13\x42\x2D\x70\x64\x83\xBF\xA0\xF9\x8A\x5E\x88\x62\x66\xE7\xAE";

    macro_rules! expect_syscall_err {
        ($code:ident, $res:expr) => {
            match $res.expect_err("expected syscall to fail") {
                $crate::kernel::ExecutionError::Syscall($crate::kernel::SyscallError(
                    _,
                    fvm_shared::error::ErrorNumber::$code,
                )) => {}
                $crate::kernel::ExecutionError::Syscall($crate::kernel::SyscallError(
                    msg,
                    code,
                )) => {
                    panic!(
                        "expected {}, got {}: {}",
                        fvm_shared::error::ErrorNumber::$code,
                        code,
                        msg
                    )
                }
                $crate::kernel::ExecutionError::Fatal(err) => {
                    panic!("got unexpected fatal error: {}", err)
                }
                $crate::kernel::ExecutionError::OutOfGas => {
                    panic!("got unexpected out of gas")
                }
            }
        };
    }

    #[test]
    fn test_read_cid() {
        let hash = cid::multihash::Multihash::wrap(SHA2_256, HASH).unwrap();
        let k = Cid::new_v1(RAW, hash);
        let mut k_bytes = k.to_bytes();
        let mem = Memory::new(&mut k_bytes);
        let k2 = mem.read_cid(0).expect("failed to read cid");
        assert_eq!(k, k2);
    }

    #[test]
    fn test_read_cid_truncated() {
        let hash = cid::multihash::Multihash::wrap(SHA2_256, HASH).unwrap();
        let k = Cid::new_v1(RAW, hash);
        let mut k_bytes = k.to_bytes();
        let mem = Memory::new(&mut k_bytes[..20]);
        expect_syscall_err!(IllegalArgument, mem.read_cid(0));
    }

    #[test]
    fn test_read_cid_out_of_bounds() {
        let mem = Memory::new(&mut []);
        expect_syscall_err!(IllegalArgument, mem.read_cid(200));
    }

    #[test]
    fn test_read_slice_out_of_bounds() {
        let mem = Memory::new(&mut []);
        expect_syscall_err!(IllegalArgument, mem.try_slice(10, 0));
        expect_syscall_err!(IllegalArgument, mem.try_slice(u32::MAX, 0));
    }

    #[test]
    fn test_read_slice_empty() {
        let mem = Memory::new(&mut []);
        mem.try_slice(0, 0).expect("slice was in bounds");
    }
}