1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
use ff::PrimeField;

use crate::threadpool::Worker;

/// Calculate the Fast Fourier Transform on the CPU (single-threaded).
///
/// The input `a` is mutated and contains the result when this function returns. The length of the
/// input vector must be `2^log_n`.
#[allow(clippy::many_single_char_names)]
pub fn serial_fft<F: PrimeField>(a: &mut [F], omega: &F, log_n: u32) {
    fn bitreverse(mut n: u32, l: u32) -> u32 {
        let mut r = 0;
        for _ in 0..l {
            r = (r << 1) | (n & 1);
            n >>= 1;
        }
        r
    }

    let n = a.len() as u32;
    assert_eq!(n, 1 << log_n);

    for k in 0..n {
        let rk = bitreverse(k, log_n);
        if k < rk {
            a.swap(rk as usize, k as usize);
        }
    }

    let mut m = 1;
    for _ in 0..log_n {
        let w_m = omega.pow_vartime([u64::from(n / (2 * m))]);

        let mut k = 0;
        while k < n {
            let mut w = F::ONE;
            for j in 0..m {
                let mut t = a[(k + j + m) as usize];
                t *= w;
                let mut tmp = a[(k + j) as usize];
                tmp -= t;
                a[(k + j + m) as usize] = tmp;
                a[(k + j) as usize] += t;
                w *= w_m;
            }

            k += 2 * m;
        }

        m *= 2;
    }
}

/// Calculate the Fast Fourier Transform on the CPU (multithreaded).
///
/// The result is is written to the input `a`.
/// The number of threads used will be `2^log_threads`.
/// There must be more items to process than threads.
pub fn parallel_fft<F: PrimeField>(
    a: &mut [F],
    worker: &Worker,
    omega: &F,
    log_n: u32,
    log_threads: u32,
) {
    assert!(log_n >= log_threads);

    let num_threads = 1 << log_threads;
    let log_new_n = log_n - log_threads;
    let mut tmp = vec![vec![F::ZERO; 1 << log_new_n]; num_threads];
    let new_omega = omega.pow_vartime([num_threads as u64]);

    worker.scope(0, |scope, _| {
        let a = &*a;

        for (j, tmp) in tmp.iter_mut().enumerate() {
            scope.execute(move || {
                // Shuffle into a sub-FFT
                let omega_j = omega.pow_vartime([j as u64]);
                let omega_step = omega.pow_vartime([(j as u64) << log_new_n]);

                let mut elt = F::ONE;
                for (i, tmp) in tmp.iter_mut().enumerate() {
                    for s in 0..num_threads {
                        let idx = (i + (s << log_new_n)) % (1 << log_n);
                        let mut t = a[idx];
                        t *= elt;
                        *tmp += t;
                        elt *= omega_step;
                    }
                    elt *= omega_j;
                }

                // Perform sub-FFT
                serial_fft::<F>(tmp, &new_omega, log_new_n);
            });
        }
    });

    // TODO: does this hurt or help?
    worker.scope(a.len(), |scope, chunk| {
        let tmp = &tmp;

        for (idx, a) in a.chunks_mut(chunk).enumerate() {
            scope.execute(move || {
                let mut idx = idx * chunk;
                let mask = (1 << log_threads) - 1;
                for a in a {
                    *a = tmp[idx & mask][idx >> log_threads];
                    idx += 1;
                }
            });
        }
    });
}

#[cfg(test)]
mod tests {
    use super::*;

    use std::cmp::min;

    use blstrs::Scalar as Fr;
    use ff::PrimeField;
    use rand_core::RngCore;

    fn omega<F: PrimeField>(num_coeffs: usize) -> F {
        // Compute omega, the 2^exp primitive root of unity
        let exp = (num_coeffs as f32).log2().floor() as u32;
        let mut omega = F::ROOT_OF_UNITY;
        for _ in exp..F::S {
            omega = omega.square();
        }
        omega
    }

    #[test]
    fn parallel_fft_consistency() {
        fn test_consistency<F: PrimeField, R: RngCore>(rng: &mut R) {
            let worker = Worker::new();

            for _ in 0..5 {
                for log_d in 0..10 {
                    let d = 1 << log_d;

                    let mut v1_coeffs = (0..d).map(|_| F::random(&mut *rng)).collect::<Vec<_>>();
                    let mut v2_coeffs = v1_coeffs.clone();
                    let v1_omega = omega::<F>(v1_coeffs.len());
                    let v2_omega = v1_omega;

                    for log_threads in log_d..min(log_d + 1, 3) {
                        parallel_fft::<F>(&mut v1_coeffs, &worker, &v1_omega, log_d, log_threads);
                        serial_fft::<F>(&mut v2_coeffs, &v2_omega, log_d);

                        assert!(v1_coeffs == v2_coeffs);
                    }
                }
            }
        }

        let rng = &mut rand::thread_rng();

        test_consistency::<Fr, _>(rng);
    }
}