1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
use group::{prime::PrimeCurveAffine, UncompressedEncoding};
use pairing::MultiMillerLoop;

use bellpepper_core::SynthesisError;
use ec_gpu_gen::multiexp_cpu::SourceBuilder;

use byteorder::{BigEndian, ReadBytesExt, WriteBytesExt};

#[cfg(not(target_arch = "wasm32"))]
mod memmap_uses {
    pub use crate::groth16::MappedParameters;
    pub use memmap2::{Mmap, MmapOptions};
    pub use std::fs::File;
    pub use std::mem;
    pub use std::ops::Range;
    pub use std::path::PathBuf;
}
use std::io::{self, Read, Write};
use std::sync::Arc;

#[cfg(not(target_arch = "wasm32"))]
use memmap_uses::*;

use super::VerifyingKey;

#[derive(Clone)]
pub struct Parameters<E>
where
    E: MultiMillerLoop,
{
    pub vk: VerifyingKey<E>,

    // Elements of the form ((tau^i * t(tau)) / delta) for i between 0 and
    // m-2 inclusive. Never contains points at infinity.
    pub h: Arc<Vec<E::G1Affine>>,

    // Elements of the form (beta * u_i(tau) + alpha v_i(tau) + w_i(tau)) / delta
    // for all auxiliary inputs. Variables can never be unconstrained, so this
    // never contains points at infinity.
    pub l: Arc<Vec<E::G1Affine>>,

    // QAP "A" polynomials evaluated at tau in the Lagrange basis. Never contains
    // points at infinity: polynomials that evaluate to zero are omitted from
    // the CRS and the prover can deterministically skip their evaluation.
    pub a: Arc<Vec<E::G1Affine>>,

    // QAP "B" polynomials evaluated at tau in the Lagrange basis. Needed in
    // G1 and G2 for C/B queries, respectively. Never contains points at
    // infinity for the same reason as the "A" polynomials.
    pub b_g1: Arc<Vec<E::G1Affine>>,
    pub b_g2: Arc<Vec<E::G2Affine>>,
}

impl<E> PartialEq for Parameters<E>
where
    E: MultiMillerLoop,
{
    fn eq(&self, other: &Self) -> bool {
        self.vk == other.vk
            && self.h == other.h
            && self.l == other.l
            && self.a == other.a
            && self.b_g1 == other.b_g1
            && self.b_g2 == other.b_g2
    }
}

impl<E> Parameters<E>
where
    E: MultiMillerLoop,
{
    pub fn write<W: Write>(&self, mut writer: W) -> io::Result<()> {
        self.vk.write(&mut writer)?;

        writer.write_u32::<BigEndian>(self.h.len() as u32)?;
        for g in &self.h[..] {
            writer.write_all(g.to_uncompressed().as_ref())?;
        }

        writer.write_u32::<BigEndian>(self.l.len() as u32)?;
        for g in &self.l[..] {
            writer.write_all(g.to_uncompressed().as_ref())?;
        }

        writer.write_u32::<BigEndian>(self.a.len() as u32)?;
        for g in &self.a[..] {
            writer.write_all(g.to_uncompressed().as_ref())?;
        }

        writer.write_u32::<BigEndian>(self.b_g1.len() as u32)?;
        for g in &self.b_g1[..] {
            writer.write_all(g.to_uncompressed().as_ref())?;
        }

        writer.write_u32::<BigEndian>(self.b_g2.len() as u32)?;
        for g in &self.b_g2[..] {
            writer.write_all(g.to_uncompressed().as_ref())?;
        }

        Ok(())
    }

    // Quickly iterates through the parameter file, recording all
    // parameter offsets and caches the verifying key (vk) for quick
    // access via reference.
    #[cfg(not(target_arch = "wasm32"))]
    pub fn build_mapped_parameters(
        param_file_path: PathBuf,
        checked: bool,
    ) -> io::Result<MappedParameters<E>> {
        let mut offset: usize = 0;
        let param_file = File::open(&param_file_path)?;
        let params = unsafe { MmapOptions::new().map(&param_file)? };

        let u32_len = mem::size_of::<u32>();
        let g1_len = mem::size_of::<<E::G1Affine as UncompressedEncoding>::Uncompressed>();
        let g2_len = mem::size_of::<<E::G2Affine as UncompressedEncoding>::Uncompressed>();

        let read_length = |params: &Mmap, offset: &mut usize| -> Result<usize, std::io::Error> {
            let mut raw_len = &params[*offset..*offset + u32_len];
            *offset += u32_len;

            match raw_len.read_u32::<BigEndian>() {
                Ok(len) => Ok(len as usize),
                Err(err) => Err(err),
            }
        };

        let get_offsets = |params: &Mmap,
                           offset: &mut usize,
                           param: &mut Vec<Range<usize>>,
                           range_len: usize|
         -> Result<(), std::io::Error> {
            let len = read_length(params, &mut *offset)?;
            for _ in 0..len {
                (*param).push(Range {
                    start: *offset,
                    end: *offset + range_len,
                });
                *offset += range_len;
            }

            Ok(())
        };

        let vk = VerifyingKey::<E>::read_mmap(&params, &mut offset)?;

        let mut h = vec![];
        let mut l = vec![];
        let mut a = vec![];
        let mut b_g1 = vec![];
        let mut b_g2 = vec![];

        get_offsets(&params, &mut offset, &mut h, g1_len)?;
        get_offsets(&params, &mut offset, &mut l, g1_len)?;
        get_offsets(&params, &mut offset, &mut a, g1_len)?;
        get_offsets(&params, &mut offset, &mut b_g1, g1_len)?;
        get_offsets(&params, &mut offset, &mut b_g2, g2_len)?;

        let pvk = super::prepare_verifying_key(&vk);

        Ok(MappedParameters {
            param_file_path,
            param_file,
            params,
            vk,
            pvk,
            h,
            l,
            a,
            b_g1,
            b_g2,
            checked,
        })
    }

    // This method is provided as a proof of concept, but isn't
    // advantageous to use (can be called by read_cached_params in
    // rust-fil-proofs repo).  It's equivalent to the existing read
    // method, in that it loads all parameters to RAM.
    #[cfg(not(target_arch = "wasm32"))]
    pub fn read_mmap(mmap: &Mmap, checked: bool) -> io::Result<Self> {
        let u32_len = mem::size_of::<u32>();
        let g1_len = mem::size_of::<<E::G1Affine as UncompressedEncoding>::Uncompressed>();
        let g2_len = mem::size_of::<<E::G2Affine as UncompressedEncoding>::Uncompressed>();

        let read_g1 = |mmap: &Mmap, offset: &mut usize| -> io::Result<E::G1Affine> {
            let ptr = &mmap[*offset..*offset + g1_len];
            *offset += g1_len;
            // Safety: this operation is safe, because it's simply
            // casting to a known struct at the correct offset, given
            // the structure of the on-disk data.
            let repr = unsafe {
                &*(ptr as *const [u8] as *const <E::G1Affine as UncompressedEncoding>::Uncompressed)
            };

            let affine: E::G1Affine = {
                let affine_opt = if checked {
                    E::G1Affine::from_uncompressed(repr)
                } else {
                    E::G1Affine::from_uncompressed_unchecked(repr)
                };
                Option::from(affine_opt)
                    .ok_or_else(|| io::Error::new(io::ErrorKind::InvalidData, "not on curve"))
            }?;

            if affine.is_identity().into() {
                Err(io::Error::new(
                    io::ErrorKind::InvalidData,
                    "point at infinity",
                ))
            } else {
                Ok(affine)
            }
        };

        let read_g2 = |mmap: &Mmap, offset: &mut usize| -> io::Result<E::G2Affine> {
            let ptr = &mmap[*offset..*offset + g2_len];
            *offset += g2_len;
            // Safety: this operation is safe, because it's simply
            // casting to a known struct at the correct offset, given
            // the structure of the on-disk data.
            let repr = unsafe {
                &*(ptr as *const [u8] as *const <E::G2Affine as UncompressedEncoding>::Uncompressed)
            };

            let affine: E::G2Affine = {
                let affine_opt = if checked {
                    E::G2Affine::from_uncompressed(repr)
                } else {
                    E::G2Affine::from_uncompressed_unchecked(repr)
                };
                Option::from(affine_opt)
                    .ok_or_else(|| io::Error::new(io::ErrorKind::InvalidData, "not on curve"))
            }?;

            if affine.is_identity().into() {
                Err(io::Error::new(
                    io::ErrorKind::InvalidData,
                    "point at infinity",
                ))
            } else {
                Ok(affine)
            }
        };

        let read_length = |mmap: &Mmap, offset: &mut usize| -> Result<usize, std::io::Error> {
            let mut raw_len = &mmap[*offset..*offset + u32_len];
            *offset += u32_len;

            match raw_len.read_u32::<BigEndian>() {
                Ok(len) => Ok(len as usize),
                Err(err) => Err(err),
            }
        };

        let get_g1s = |mmap: &Mmap,
                       offset: &mut usize,
                       param: &mut Vec<E::G1Affine>|
         -> Result<(), std::io::Error> {
            let len = read_length(mmap, &mut *offset)?;
            for _ in 0..len {
                (*param).push(read_g1(mmap, &mut *offset)?);
            }

            Ok(())
        };

        let get_g2s = |mmap: &Mmap,
                       offset: &mut usize,
                       param: &mut Vec<E::G2Affine>|
         -> Result<(), std::io::Error> {
            let len = read_length(mmap, &mut *offset)?;
            for _ in 0..len {
                (*param).push(read_g2(mmap, &mut *offset)?);
            }

            Ok(())
        };

        let mut offset: usize = 0;
        let vk = VerifyingKey::<E>::read_mmap(mmap, &mut offset)?;

        let mut h = vec![];
        let mut l = vec![];
        let mut a = vec![];
        let mut b_g1 = vec![];
        let mut b_g2 = vec![];

        get_g1s(mmap, &mut offset, &mut h)?;
        get_g1s(mmap, &mut offset, &mut l)?;
        get_g1s(mmap, &mut offset, &mut a)?;
        get_g1s(mmap, &mut offset, &mut b_g1)?;
        get_g2s(mmap, &mut offset, &mut b_g2)?;

        Ok(Parameters {
            vk,
            h: Arc::new(h),
            l: Arc::new(l),
            a: Arc::new(a),
            b_g1: Arc::new(b_g1),
            b_g2: Arc::new(b_g2),
        })
    }

    pub fn read<R: Read>(mut reader: R, checked: bool) -> io::Result<Self> {
        let read_g1 = |reader: &mut R| -> io::Result<E::G1Affine> {
            let mut repr = <E::G1Affine as UncompressedEncoding>::Uncompressed::default();
            reader.read_exact(repr.as_mut())?;

            let affine: E::G1Affine = {
                let affine_opt = if checked {
                    E::G1Affine::from_uncompressed(&repr)
                } else {
                    E::G1Affine::from_uncompressed_unchecked(&repr)
                };
                Option::from(affine_opt)
                    .ok_or_else(|| io::Error::new(io::ErrorKind::InvalidData, "not on curve"))
            }?;

            if affine.is_identity().into() {
                Err(io::Error::new(
                    io::ErrorKind::InvalidData,
                    "point at infinity",
                ))
            } else {
                Ok(affine)
            }
        };

        let read_g2 = |reader: &mut R| -> io::Result<E::G2Affine> {
            let mut repr = <E::G2Affine as UncompressedEncoding>::Uncompressed::default();
            reader.read_exact(repr.as_mut())?;

            let affine: E::G2Affine = {
                let affine_opt = if checked {
                    E::G2Affine::from_uncompressed(&repr)
                } else {
                    E::G2Affine::from_uncompressed_unchecked(&repr)
                };
                Option::from(affine_opt)
                    .ok_or_else(|| io::Error::new(io::ErrorKind::InvalidData, "not on curve"))
            }?;

            if affine.is_identity().into() {
                Err(io::Error::new(
                    io::ErrorKind::InvalidData,
                    "point at infinity",
                ))
            } else {
                Ok(affine)
            }
        };

        let vk = VerifyingKey::<E>::read(&mut reader)?;

        let mut h = vec![];
        let mut l = vec![];
        let mut a = vec![];
        let mut b_g1 = vec![];
        let mut b_g2 = vec![];

        {
            let len = reader.read_u32::<BigEndian>()? as usize;
            for _ in 0..len {
                h.push(read_g1(&mut reader)?);
            }
        }
        {
            let len = reader.read_u32::<BigEndian>()? as usize;
            for _ in 0..len {
                l.push(read_g1(&mut reader)?);
            }
        }

        {
            let len = reader.read_u32::<BigEndian>()? as usize;
            for _ in 0..len {
                a.push(read_g1(&mut reader)?);
            }
        }

        {
            let len = reader.read_u32::<BigEndian>()? as usize;
            for _ in 0..len {
                b_g1.push(read_g1(&mut reader)?);
            }
        }

        {
            let len = reader.read_u32::<BigEndian>()? as usize;
            for _ in 0..len {
                b_g2.push(read_g2(&mut reader)?);
            }
        }

        Ok(Parameters {
            vk,
            h: Arc::new(h),
            l: Arc::new(l),
            a: Arc::new(a),
            b_g1: Arc::new(b_g1),
            b_g2: Arc::new(b_g2),
        })
    }
}

pub trait ParameterSource<E>: Send + Sync
where
    E: MultiMillerLoop,
{
    type G1Builder: SourceBuilder<E::G1Affine>;
    type G2Builder: SourceBuilder<E::G2Affine>;

    fn get_vk(&self, num_ic: usize) -> Result<&VerifyingKey<E>, SynthesisError>;
    fn get_h(&self, num_h: usize) -> Result<Self::G1Builder, SynthesisError>;
    fn get_l(&self, num_l: usize) -> Result<Self::G1Builder, SynthesisError>;
    fn get_a(
        &self,
        num_inputs: usize,
        num_aux: usize,
    ) -> Result<(Self::G1Builder, Self::G1Builder), SynthesisError>;
    fn get_b_g1(
        &self,
        num_inputs: usize,
        num_aux: usize,
    ) -> Result<(Self::G1Builder, Self::G1Builder), SynthesisError>;
    fn get_b_g2(
        &self,
        num_inputs: usize,
        num_aux: usize,
    ) -> Result<(Self::G2Builder, Self::G2Builder), SynthesisError>;
    // This is a bit of a hack. For the SupraSeal code, we need access to SRS (Groth parameters)
    // that were read in on the C++ side. For SupraSeal we just pass it on as an opaque reference.
    // This code path should only ever get executed when SupraSeal is used.
    // It's part of the trait, so that we don't need to change a lot of the APIs, but instead can
    // just pass on the `ParameterSource` trait.
    #[cfg(feature = "cuda-supraseal")]
    fn get_supraseal_srs(&self) -> Option<&supraseal_c2::SRS> {
        None
    }
}

impl<'a, E> ParameterSource<E> for &'a Parameters<E>
where
    E: MultiMillerLoop,
{
    type G1Builder = (Arc<Vec<E::G1Affine>>, usize);
    type G2Builder = (Arc<Vec<E::G2Affine>>, usize);

    fn get_vk(&self, _: usize) -> Result<&VerifyingKey<E>, SynthesisError> {
        Ok(&self.vk)
    }

    fn get_h(&self, _: usize) -> Result<Self::G1Builder, SynthesisError> {
        Ok((self.h.clone(), 0))
    }

    fn get_l(&self, _: usize) -> Result<Self::G1Builder, SynthesisError> {
        Ok((self.l.clone(), 0))
    }

    fn get_a(
        &self,
        num_inputs: usize,
        _: usize,
    ) -> Result<(Self::G1Builder, Self::G1Builder), SynthesisError> {
        Ok(((self.a.clone(), 0), (self.a.clone(), num_inputs)))
    }

    fn get_b_g1(
        &self,
        num_inputs: usize,
        _: usize,
    ) -> Result<(Self::G1Builder, Self::G1Builder), SynthesisError> {
        Ok(((self.b_g1.clone(), 0), (self.b_g1.clone(), num_inputs)))
    }

    fn get_b_g2(
        &self,
        num_inputs: usize,
        _: usize,
    ) -> Result<(Self::G2Builder, Self::G2Builder), SynthesisError> {
        Ok(((self.b_g2.clone(), 0), (self.b_g2.clone(), num_inputs)))
    }
}