1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
/// This module implements two binding commitment schemes used in the Groth16
/// aggregation.
/// The first one is a commitment scheme that commits to a single vector $a$ of
/// length n in the second base group $G_1$ (for example):
/// * it requires a structured SRS $v_1$ of the form $(h,h^u,h^{u^2}, ...
/// ,g^{h^{n-1}})$ with $h \in G_2$ being a random generator of $G_2$ and $u$ a
/// random scalar (coming from a power of tau ceremony for example)
/// * it requires a second structured SRS $v_2$ of the form $(h,h^v,h^{v^2},
/// ...$ with $v$ being a random scalar different than u (coming from another
/// power of tau ceremony for example)
/// The Commitment is a tuple $(\prod_{i=0}^{n-1} e(a_i,v_{1,i}),
/// \prod_{i=0}^{n-1} e(a_i,v_{2,i}))$
///
/// The second one takes two vectors $a \in G_1^n$ and $b \in G_2^n$ and commits
/// to them using a similar approach as above. It requires an additional SRS
/// though:
/// * $v_1$ and $v_2$ stay the same
/// * An additional tuple $w_1 = (g^{u^n},g^{u^{n+1}},...g^{u^{2n-1}})$ and $w_2 =
/// (g^{v^n},g^{v^{n+1},...,g^{v^{2n-1}})$ where $g$ is a random generator of
/// $G_1$
/// The commitment scheme returns a tuple:
/// * $\prod_{i=0}^{n-1} e(a_i,v_{1,i})e(w_{1,i},b_i)$
/// * $\prod_{i=0}^{n-1} e(a_i,v_{2,i})e(w_{2,i},b_i)$
///
/// The second commitment scheme enables to save some KZG verification in the
/// verifier of the Groth16 verification protocol since we pack two vectors in
/// one commitment.
use std::ops::AddAssign;

use group::{prime::PrimeCurveAffine, Curve};
use rayon::prelude::*;

use crate::groth16::aggregate::inner_product;
use bellpepper_core::SynthesisError;
use pairing::{Engine, MultiMillerLoop};

/// Key is a generic commitment key that is instanciated with g and h as basis,
/// and a and b as powers.
#[derive(Clone, Debug)]
pub struct Key<G: PrimeCurveAffine> {
    /// Exponent is a
    pub a: Vec<G>,
    /// Exponent is b
    pub b: Vec<G>,
}
/// Commitment key used by the "single" commitment on G1 values as
/// well as in the "pair" commtitment.
/// It contains $\{h^a^i\}_{i=1}^n$ and $\{h^b^i\}_{i=1}^n$
pub type VKey<E> = Key<<E as Engine>::G2Affine>;

/// Commitment key used by the "pair" commitment. Note the sequence of
/// powers starts at $n$ already.
/// It contains $\{g^{a^{n+i}}\}_{i=1}^n$ and $\{g^{b^{n+i}}\}_{i=1}^n$
pub type WKey<E> = Key<<E as Engine>::G1Affine>;

impl<G> Key<G>
where
    G: PrimeCurveAffine,
{
    /// Returns true if commitment keys have the exact required length.
    /// It is necessary for the IPP scheme to work that commitment
    /// key have the exact same number of arguments as the number of proofs to
    /// aggregate.
    pub fn has_correct_len(&self, n: usize) -> bool {
        self.a.len() == n && self.b.len() == n
    }

    /// Returns both vectors scaled by the given vector entrywise.
    /// In other words, it returns $\{v_i^{s_i}\}$
    pub fn scale(&self, s_vec: &[G::Scalar]) -> Result<Self, SynthesisError> {
        if self.a.len() != s_vec.len() {
            return Err(SynthesisError::IncompatibleLengthVector(
                "scaling commitment key".to_string(),
            ));
        }
        let (a, b) = self
            .a
            .par_iter()
            .zip(self.b.par_iter())
            .zip(s_vec.par_iter())
            .map(|((ap, bp), si)| {
                let v1s = (ap.to_curve() * si).to_affine();
                let v2s = (bp.to_curve() * si).to_affine();
                (v1s, v2s)
            })
            .unzip();

        Ok(Self { a, b })
    }

    /// Returns the left and right commitment key part. It makes copy.
    pub fn split(mut self, at: usize) -> (Self, Self) {
        let a_right = self.a.split_off(at);
        let b_right = self.b.split_off(at);
        (
            Self {
                a: self.a,
                b: self.b,
            },
            Self {
                a: a_right,
                b: b_right,
            },
        )
    }

    /// Takes a left and right commitment key and returns a commitment
    /// key $left \circ right^{scale} = (left_i*right_i^{scale} ...)$. This is
    /// required step during GIPA recursion.
    pub fn compress(&self, right: &Self, scale: &G::Scalar) -> Result<Self, SynthesisError> {
        let left = self;
        if left.a.len() != right.a.len() {
            return Err(SynthesisError::IncompatibleLengthVector(
                "compressing commitment key".to_string(),
            ));
        }
        let (a, b): (Vec<G>, Vec<G>) = left
            .a
            .par_iter()
            .zip(left.b.par_iter())
            .zip(right.a.par_iter())
            .zip(right.b.par_iter())
            .map(|(((left_a, left_b), right_a), right_b)| {
                let mut ra = right_a.to_curve() * scale;
                let mut rb = right_b.to_curve() * scale;
                ra.add_assign(left_a);
                rb.add_assign(left_b);
                (ra.to_affine(), rb.to_affine())
            })
            .unzip();

        Ok(Self { a, b })
    }

    /// Returns the first values in the vector of v1 and v2 (respectively
    /// w1 and w2). When commitment key is of size one, it's a proxy to get the
    /// final values.
    pub fn first(&self) -> (G, G) {
        (self.a[0], self.b[0])
    }
}

/// Both commitment outputs a pair of $F_q^k$ element.
pub type Output<E> = (<E as Engine>::Gt, <E as Engine>::Gt);

/// Commits to a single vector of G1 elements in the following way:
/// $T = \prod_{i=0}^n e(A_i, v_{1,i})$
/// $U = \prod_{i=0}^n e(A_i, v_{2,i})$
/// Output is $(T,U)$
pub fn single_g1<E>(vkey: &VKey<E>, a_vec: &[E::G1Affine]) -> Result<Output<E>, SynthesisError>
where
    E: MultiMillerLoop,
{
    try_par! {
        let a = inner_product::pairing::<E>(a_vec, &vkey.a),
        let b = inner_product::pairing::<E>(a_vec, &vkey.b)
    };
    Ok((a, b))
}

/// Commits to a tuple of G1 vector and G2 vector in the following way:
/// $T = \prod_{i=0}^n e(A_i, v_{1,i})e(B_i,w_{1,i})$
/// $U = \prod_{i=0}^n e(A_i, v_{2,i})e(B_i,w_{2,i})$
/// Output is $(T,U)$
pub fn pair<E>(
    vkey: &VKey<E>,
    wkey: &WKey<E>,
    a: &[E::G1Affine],
    b: &[E::G2Affine],
) -> Result<Output<E>, SynthesisError>
where
    E: MultiMillerLoop,
{
    try_par! {
        // (A * v)
        let t1 = inner_product::pairing::<E>(a, &vkey.a),
        // (w * B)
        let t2 = inner_product::pairing::<E>(&wkey.a, b),
        let u1 = inner_product::pairing::<E>(a, &vkey.b),
        let u2 = inner_product::pairing::<E>(&wkey.b, b)
    };

    // (A * v)(w * B)
    Ok((t1 + t2, u1 + u2))
}

#[allow(clippy::many_single_char_names)]
#[cfg(test)]
mod tests {
    use super::*;
    use crate::groth16::aggregate::structured_generators_scalar_power;
    use blstrs::{Bls12, G1Projective, G2Projective, Scalar as Fr};
    use ff::Field;
    use group::Group;
    use rand_core::SeedableRng;

    #[test]
    fn test_commit_single() {
        let n = 6;
        let mut rng = rand_chacha::ChaChaRng::seed_from_u64(0u64);
        let h = G2Projective::generator();
        let u = Fr::random(&mut rng);
        let v = Fr::random(&mut rng);
        let v1 = structured_generators_scalar_power(n, &h, &u);
        let v2 = structured_generators_scalar_power(n, &h, &v);
        let vkey = VKey::<Bls12> { a: v1, b: v2 };
        let a = (0..n)
            .map(|_| G1Projective::random(&mut rng).to_affine())
            .collect::<Vec<_>>();
        let c1 = single_g1::<Bls12>(&vkey, &a).unwrap();
        let c2 = single_g1::<Bls12>(&vkey, &a).unwrap();
        assert_eq!(c1, c2);
        let b = (0..n)
            .map(|_| G1Projective::random(&mut rng).to_affine())
            .collect::<Vec<_>>();
        let c3 = single_g1::<Bls12>(&vkey, &b).unwrap();
        assert!(c1 != c3);
    }

    #[test]
    fn test_commit_pair() {
        let n = 6;
        let mut rng = rand_chacha::ChaChaRng::seed_from_u64(0u64);
        let h = G2Projective::generator();
        let g = G1Projective::generator();
        let u = Fr::random(&mut rng);
        let v = Fr::random(&mut rng);
        let v1 = structured_generators_scalar_power(n, &h, &u);
        let v2 = structured_generators_scalar_power(n, &h, &v);
        let w1 = structured_generators_scalar_power(2 * n, &g, &u);
        let w2 = structured_generators_scalar_power(2 * n, &g, &v);

        let vkey = VKey::<Bls12> { a: v1, b: v2 };
        let wkey = WKey::<Bls12> {
            a: w1[n..].to_vec(),
            b: w2[n..].to_vec(),
        };
        let a = (0..n)
            .map(|_| G1Projective::random(&mut rng).to_affine())
            .collect::<Vec<_>>();
        let b = (0..n)
            .map(|_| G2Projective::random(&mut rng).to_affine())
            .collect::<Vec<_>>();
        let c1 = pair::<Bls12>(&vkey, &wkey, &a, &b).unwrap();
        let c2 = pair::<Bls12>(&vkey, &wkey, &a, &b).unwrap();
        assert_eq!(c1, c2);
        pair::<Bls12>(&vkey, &wkey, &a[1..2], &b).expect_err("this should have failed");
    }
}